このページは で作られています。

で作られています。

専門知識不要で本格的なウェブサイトを作成できる! 無料で試してみる 無料で試してみる

本多ラボ Honda-Lab.


研究活動 Research activities

【口頭発表 Recent talks (2019-)】
●2019.3.22 電子情報通信学会 総合大会 IEICE general conference 2019
  "Perturbation on Quantum PageRank"
●2019.7.15 ComFoS19 
"Mathematical analysis of molecular communication network" (Invited speech)
https://sites.google.com/view/comfos19/
●2019.9.5 応用数理学会 年会 JSIAM annual conference 2019
"Mathematical analysis of reservoir computing"
●2019.11.15
[Invited talk]金沢大学「微分方程式とデータサイエンス」第1回
Joined and talked in the conference "Differential equations and data science" @Kanazawa univ.
"Analysis on graphon-based reservoir computing"
http://scheme.hn/deds/
●2020.2.20 ICAIIC2020 
"Reservoir computing with inertial manifold"
http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=91115
●2020.3.5 応用数理学会 部会連合発表会(大会中止、講演は見なし成立)
 JSIAM conference (Canceled, but regarded as presented)
"On reservoir computing with inertial form"
●2020.3.17 日本数学会 年会(大会中止、講演は見なし成立)
 MSJ Spring Meeting 2020 (Canceled, but regarded as presented)
"Mathematical analysis on a target detection model"
●2020.3.18 電子情報通信学会 総合大会(大会中止、講演は見なし成立)
 IEICE general conference 2020 (Canceled, but regarded as presented)
"On graph limit of sparse digraphs"
●2020.9.8 応用数理学会 年会 JSIAM conference
"Approximating multi-layer neural network by an optimal control of PDE"
●2020.9.18 電子情報通信学会 ソサエティ大会 IEICE general conference 2020 
"Continuous limit of neural network"
●2020.11.17 NOLTA2020 "On Continuous Limit of Neural Network"
●2021.3.9 電子情報通信学会 総合大会
 IEICE general conference 2021
"マイクログリッドによる電力網のレジリエンス向上の一検討"
●2021.3.19 日本数学会 2021年 年会(オンライン)
MSJ Spring Meeting 2021(online)
"Continuous limit of neural network-based multiclass classification"
●2021.4.15 ICAIIC2021 
"A novel framework for reservoir computing with inertial manifolds"
http://icaiic.org/wp-content/uploads/2021/04/ICAIIC2021_Detailed_Program_2104009_v1.pdf
●2021.9.7 応用数理学会 年会 JSIAM annual conference 2021 
"On universal approximation property of a partial differential equation-based neural network"
●2021.9.16 電子情報通信学会 ソサエティ大会 IEICE general conference 2021 
"On universal approximation property and Barnsley operator" 
●2021.9.17 日本数学会 2021 秋季総合分科会 MSJ Autumn meeting 2021 
"On partial differential equation-based neural network with additional parameters" 
●2021.12.15 
Hirotada Honda, Pham Thu Thao, Tam Xiuyao, Cung Viet Duy, and Mamoru Miyazawa,
"On the extension of reservoir computing with an inertial form",
Proc. the 3rd Russia-Japan Workshop "Mathematical analysis of fracture phenomena for elastic structures and its applications" (ComFoS21), December 2021.
●2022.3.8 応用数理学会 部会連合発表会 JSIAM joint conference
"Application of mean field game to dimensionality reduction"
●2022.3.18 電子情報通信学会 総合大会
 IEICE general conference 2022
"Proposal of the GAN with a convex learner"
●2022.3.31 日本数学会 2022年 年会(オンライン開催に変更)
MSJ Spring Meeting 2022(changed to online conference)
"Revisiting the stability of GAN"
●2022.9.7 応用数理学会 年会 JSIAM annual meeting 2022
"On a singular perturbation perspective of the Momentum ResNet"
●2023.2.20 ICAIIC2023
Hirotada Honda, Phuong Dinh, Pham Thu Thao, Yuho Tabata and Bui Duc Anh, "Dimensionality reduction as a non-cooperative game"
http://icaiic.org/wp-content/uploads/2023/02/ICAIIC-2023-program-v9.pdf
●2023.3.2
情報処理学会第85回全国大会 IPS Japan conference
河村聡太,本多泰理,中村周吾,佐野崇: "フレーム間差分を用いた画像セグメンテーション改善法の検討"
●2023.3.10
応用数理学会第19回研究部会連合発表会 JSIAM joint conference
本多泰理,"An ODE-based neural network with Bayesian optimization"
●2023.11.19
[Invited talk, Best presentation award] Hirotada Honda, "On the learnability of differential equation-based neural networks",  MLIS2023. http://www.machinelearningconf.org/Speaker
●2024.1.9
Phuong Dinh, Deddy Jobson, Takashi Sano, Hirotada Honda, Shugo Nakamura, "Understanding Neural ODE prediction decision using SHAP", NLDL2024, Poster session.
https://www.nldl.org/home
●2024.2.21
ICAIIC2024
Hirotada Honda, "An application of a PDE-based neural network with Bayesian optimization to regression"
●2024.3.16 
情報処理学会第86回全国大会 IPS Japan conference
Tuan Nguyen Manh Duc,本多泰理,佐野崇,中村周吾:" Incorporating Graph Neural Network with Diffusion-Based Generative Models for Antigen-Specific Antibody Design"
●2024.5.16 電子情報通信学会 パターン認識・メディア理解研究会IEICE PRMU Conference (in Japanese)
河村聡太,本多泰理,中村周吾,佐野崇:
"フレーム間差分を用いた動画セグメンテーションモデルの開発と評価
(Development and evaluation of a video segmentation model using differences between frames)",
IEICE Technical Report (Web)) 124, 23, 13--17 2024.

●2024.9.14 応用数理学会 年会 JSIAM annual meeting 2024
本多 泰理, Tuan Nguyen, 佐野 崇, 中村 周吾:"On differential-equation based-neural-networks on manifolds"
●2024.10.24  
[Invited talk] Hirotada Honda, "Some topics in differential equation-based neural networks",  MCML24.
https://sites.google.com/view/kanazawa24mcml/home
●2025.1.25 ICMLSC 2025
Sota Kawamura, Hirotada Honda, Shugo Nakamura, Takashi Sano
"Investigation of Frame Differences as Motion Cues for Video Object Segmentation".
●2025.3.7 応用数理学会 部会連合発表会 JSIAM joint conference
"On the flow embedding problem and ODE-based neural networks on fiber bundles", 岡山大学津島キャンパス.

【論文 Recent papers (2019-)】
●Sanaullah, H. Honda, K. Roy, A. Schneider, J. Waßmuth and T. Jungeblut,Automating Neural Model Selection in Spiking Neural Networks Using AutoML Techniques,2025 22nd International Learning and Technology Conference (L&T), jeddah, Saudi Arabia,
2025, pp. 274-279, doi: 10.1109/LT64002.2025.10941536.
●Phuong Dinh, Deddy Jobson, Takashi Sano, Hirotada Honda, Shugo Nakamura,Understanding Neural ODE prediction decision using SHAP, Proceedings of the 5th Northern Lights Deep Learning Conference (NLDL), PMLR 233 (2024), 53--58.
●T. Nguyen, T. M. Nguyen, H. Honda, T. Sano, V. Nguyen, and S. Nakamura,
 From Coupled Oscillators to Graph Neural Networks: Reducing Over-
 smoothing via a Kuramoto Model-based Approach, Proc. 
 AISTATS2024, 2710--2718.
●Honda, H., An application of a PDE-based neural network with Bayesian 
  optimization to regression, Proc. ICAIIC2024.
DOI:10.1109/ICAIIC60209.2024.10463286
●Honda, H., On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay, NHM, 19 (1) (2024). 
DOI:10.3934/nhm.2024001
●Honda, H.,  Universal approximation property of a continuous neural network based on a nonlinear diffusion equation. Adv Cont Discr Mod 2023, 43 (2023).
DOI:10.1186/s13662-023-03787-z
●(In Japanese) 上野 允照,佐野 崇,本多 泰理,中村 周吾: 自然言語処理技術を用いた詐欺的な暗号資産の検出方法, 人工知能学会論文誌 38, E-N34_1-9 (2023)
DOI:10.1527/tjsai.38-5_E-N34
●Honda, H., Stability Arguments in Molecular Communication Networks, In:Bifurcation Theory and Applications, eds:Terry E. Moschandreou, IntechOpen, Rijeka, 2023.
DOI:10.5772/intechopen.112599
●Honda, H., Sano,T., Nakamura,S., Ueno.M, Hanazawa,H. and Tuan,N.M.D.,
An ODE-based neural network with Bayesian optimization, JSIAM Letters 15 (2023), 101--104.
DOI:10.14495/jsiaml.15.101
●Honda, H. and Tani, A., Small-time Solvability of the Primitive Equations for the Coupled Atmosphere and Ocean Model, Acta Applicandae Mathematicae, 184 (1), (2023).
DOI:10.1007/s10440-023-00555-9
●Honda, H., Phuong Dinh, Pham Thu Thao, Yuho Tabata, and Bui Duc Anh, Dimensionality reduction as a non-cooperative game, Proc. ICAIIC2023. DOI:10.1109/ICAIIC57133.2023.10067075
●Honda, H., Reservoir computing with an inertial form, SIAM Journal on Applied Dynamical Systems 20(2021), 1320--1347.
●Honda, H., A novel framework for reservoir computing with inertial manifolds, Proc. ICAIIC2021.
DOI:10.1109/ICAIIC51459.2021.9415194
●Honda, H., On a partial differential equation based Neural Network, IEICE Comex 10 (2021), 137--143. 
●Honda, H., On continuous limit of neural network, Proc. NOLTA2020.
●Honda, H. The sensitivity of a quantum PageRank. Japan J. Indust. Appl. Math. 37, 621–656 (2020).
DOI:10.1007/s13160-020-00410-6
●Honda,H., IMPROVING RESULTS FOR CUT AND OPERATOR NORMS ON GRAPHON,IJAM 33(2020),321--330.
●Honda,H., Reservoir computing with inertial manifold, Proc. ICAIIC2020.
●Honda,H. and Saito, H., Nation-Wide Disaster Avoidance Control Against Heavy Rain, IEEE/ACM Transactions on Networking 27(2019), 1084--1097.
●Honda,H.,On a model of target detection in molecular communication networks, NHM 14(2019),633--657.

主な研究テーマ Topics

偏微分方程式、関数解析、力学系
Partial differential equation , functional analysis and dynamical systems
・流体の偏微分方程式の数学解析
 Mathematical analysis on partial differential equation of fluid mechanics
・振動現象に関する偏微分方程式の数学解析
 Mathematical analysis on partial differential equation of oscillation
・無限次元力学系による体内メカニズムの長時間挙動の研究
 Global-in-time behavior of mechanism of human body based on infinite-dimensional dynamical system

確率過程、量子walkへの応用
Application to stochastic processes and quantum walk
PageRankアルゴリズム/量子PageRankの感度分析
Sensitivity analyses on Google/quantum PageRanks
機械学習への応用
Application to machine learning
ゲーム理論、最適輸送理論、関数解析、力学系理論の機械学習への応用
Applicatin of game theory, optimal transport, functional analysis and dynamical system to machine leaerning theory.
データ分析の理論、応用
Data analysis; theory and application
各種データ分析、被災回避への応用
Analyses of various kinds of of data, application to disaster avoidance.
小見出し
ここをクリックして表示したいテキストを入力してください。テキストは「右寄せ」「中央寄せ」「左寄せ」といった整列方向、「太字」「斜体」「下線」「取り消し線」、「文字サイズ」「文字色」「文字の背景色」など細かく編集することができます。